
EXAMPLE 10.6

Calculating the Distance Traveled by a Fly on the Edge of a Microwave Oven Plate
A person decides to use a microwave oven to reheat some lunch. In the process, a fly accidentally flies into the microwave and
lands on the outer edge of the rotating plate and remains there. If the plate has a radius of 0.15 m and rotates at 6.0 rpm,
calculate the total distance traveled by the fly during a 2.0-min cooking period. (Ignore the start-up and slow-down times.)

Strategy

First, find the total number of revolutions , and then the linear distance traveled. can be used to find because is
given to be 6.0 rpm.

Solution

Entering known values into gives

As always, it is necessary to convert revolutions to radians before calculating a linear quantity like from an angular quantity
like :

Now, using the relationship between and , we can determine the distance traveled:

Discussion

Quite a trip (if it survives)! Note that this distance is the total distance traveled by the fly. Displacement is actually zero for
complete revolutions because they bring the fly back to its original position. The distinction between total distance traveled and
displacement was first noted in One-Dimensional Kinematics.

CHECK YOUR UNDERSTANDING
Rotational kinematics has many useful relationships, often expressed in equation form. Are these relationships laws of physics
or are they simply descriptive? (Hint: the same question applies to linear kinematics.)

Solution
Rotational kinematics (just like linear kinematics) is descriptive and does not represent laws of nature. With kinematics, we can
describe many things to great precision but kinematics does not consider causes. For example, a large angular acceleration
describes a very rapid change in angular velocity without any consideration of its cause.

10.3 Dynamics of Rotational Motion: Rotational Inertia
If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular velocity as seen
in Figure 10.10. In fact, your intuition is reliable in predicting many of the factors that are involved. For example, we know that a
door opens slowly if we push too close to its hinges. Furthermore, we know that the more massive the door, the more slowly it
opens. The first example implies that the farther the force is applied from the pivot, the greater the angular acceleration; another
implication is that angular acceleration is inversely proportional to mass. These relationships should seem very similar to the
familiar relationships among force, mass, and acceleration embodied in Newton’s second law of motion. There are, in fact,
precise rotational analogs to both force and mass.
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Figure 10.10 Force is required to spin the bike wheel. The greater the force, the greater the angular acceleration produced. The more

massive the wheel, the smaller the angular acceleration. If you push on a spoke closer to the axle, the angular acceleration will be smaller.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if we exert a
force on a point mass that is at a distance from a pivot point, as shown in Figure 10.11. Because the force is perpendicular
to , an acceleration is obtained in the direction of . We can rearrange this equation such that and then look
for ways to relate this expression to expressions for rotational quantities. We note that , and we substitute this
expression into , yielding

Recall that torque is the turning effectiveness of a force. In this case, because is perpendicular to , torque is simply .
So, if we multiply both sides of the equation above by , we get torque on the left-hand side. That is,

or

This last equation is the rotational analog of Newton’s second law ( ), where torque is analogous to force, angular
acceleration is analogous to translational acceleration, and is analogous to mass (or inertia). The quantity is called the
rotational inertia or moment of inertia of a point mass a distance from the center of rotation.

Figure 10.11 An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies centripetal

force. A force is applied to the object perpendicular to the radius , causing it to accelerate about the pivot point. The force is kept

perpendicular to .

Rotational Inertia and Moment of Inertia
Before we can consider the rotation of anything other than a point mass like the one in Figure 10.11, we must extend the idea of
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Making Connections: Rotational Motion Dynamics
Dynamics for rotational motion is completely analogous to linear or translational dynamics. Dynamics is concerned with
force and mass and their effects on motion. For rotational motion, we will find direct analogs to force and mass that behave
just as we would expect from our earlier experiences.
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rotational inertia to all types of objects. To expand our concept of rotational inertia, we define the moment of inertia of an
object to be the sum of for all the point masses of which it is composed. That is, . Here is analogous to in
translational motion. Because of the distance , the moment of inertia for any object depends on the chosen axis. Actually,
calculating is beyond the scope of this text except for one simple case—that of a hoop, which has all its mass at the same
distance from its axis. A hoop’s moment of inertia around its axis is therefore , where is its total mass and its radius.
(We use and for an entire object to distinguish them from and for point masses.) In all other cases, we must consult
Figure 10.12 (note that the table is piece of artwork that has shapes as well as formulae) for formulas for that have been derived
from integration over the continuous body. Note that has units of mass multiplied by distance squared ( ), as we might
expect from its definition.

The general relationship among torque, moment of inertia, and angular acceleration is

or

where net is the total torque from all forces relative to a chosen axis. For simplicity, we will only consider torques exerted by
forces in the plane of the rotation. Such torques are either positive or negative and add like ordinary numbers. The relationship
in is the rotational analog to Newton’s second law and is very generally applicable. This equation is actually
valid for any torque, applied to any object, relative to any axis.

As we might expect, the larger the torque is, the larger the angular acceleration is. For example, the harder a child pushes on a
merry-go-round, the faster it accelerates. Furthermore, the more massive a merry-go-round, the slower it accelerates for the
same torque. The basic relationship between moment of inertia and angular acceleration is that the larger the moment of
inertia, the smaller is the angular acceleration. But there is an additional twist. The moment of inertia depends not only on the
mass of an object, but also on its distribution of mass relative to the axis around which it rotates. For example, it will be much
easier to accelerate a merry-go-round full of children if they stand close to its axis than if they all stand at the outer edge. The
mass is the same in both cases, but the moment of inertia is much larger when the children are at the edge.
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Take-Home Experiment
Cut out a circle that has about a 10 cm radius from stiff cardboard. Near the edge of the circle, write numbers 1 to 12 like
hours on a clock face. Position the circle so that it can rotate freely about a horizontal axis through its center, like a wheel.
(You could loosely nail the circle to a wall.) Hold the circle stationary and with the number 12 positioned at the top, attach a
lump of blue putty (sticky material used for fixing posters to walls) at the number 3. How large does the lump need to be to
just rotate the circle? Describe how you can change the moment of inertia of the circle. How does this change affect the
amount of blue putty needed at the number 3 to just rotate the circle? Change the circle’s moment of inertia and then try
rotating the circle by using different amounts of blue putty. Repeat this process several times.

Problem-Solving Strategy for Rotational Dynamics
1. Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch of the

situation.
2. Determine the system of interest.
3. Draw a free body diagram. That is, draw and label all external forces acting on the system of interest.
4. Apply , the rotational equivalent of Newton’s second law, to solve the problem. Care must be

taken to use the correct moment of inertia and to consider the torque about the point of rotation.
5. As always, check the solution to see if it is reasonable.
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EXAMPLE 10.7

Calculating the Effect of Mass Distribution on a Merry-Go-Round
Consider the father pushing a playground merry-go-round in Figure 10.13. He exerts a force of 250 N at the edge of the 50.0-kg
merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced (a) when no one is on the merry-go-
round and (b) when an 18.0-kg child sits 1.25 m away from the center. Consider the merry-go-round itself to be a uniform disk
with negligible retarding friction.

Making Connections
In statics, the net torque is zero, and there is no angular acceleration. In rotational motion, net torque is the cause of
angular acceleration, exactly as in Newton’s second law of motion for rotation.

Figure 10.12 Some rotational inertias.
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Figure 10.13 A father pushes a playground merry-go-round at its edge and perpendicular to its radius to achieve maximum torque.

Strategy

Angular acceleration is given directly by the expression :

To solve for , we must first calculate the torque (which is the same in both cases) and moment of inertia (which is greater in
the second case). To find the torque, we note that the applied force is perpendicular to the radius and friction is negligible, so
that

Solution for (a)

The moment of inertia of a solid disk about this axis is given in Figure 10.12 to be

where and , so that

Now, after we substitute the known values, we find the angular acceleration to be

Solution for (b)

We expect the angular acceleration for the system to be less in this part, because the moment of inertia is greater when the child
is on the merry-go-round. To find the total moment of inertia , we first find the child’s moment of inertia by considering the
child to be equivalent to a point mass at a distance of 1.25 m from the axis. Then,

The total moment of inertia is the sum of moments of inertia of the merry-go-round and the child (about the same axis). To
justify this sum to yourself, examine the definition of :

Substituting known values into the equation for gives

Discussion

The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as expected.
The angular accelerations found are quite large, partly due to the fact that friction was considered to be negligible. If, for
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example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-go-round an angular velocity of 13.3 rad/s
when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per second, these angular velocities are 2.12
rev/s and 1.41 rev/s, respectively. The father would end up running at about 50 km/h in the first case. Summer Olympics, here he
comes! Confirmation of these numbers is left as an exercise for the reader.

CHECK YOUR UNDERSTANDING
Torque is the analog of force and moment of inertia is the analog of mass. Force and mass are physical quantities that depend on
only one factor. For example, mass is related solely to the numbers of atoms of various types in an object. Are torque and
moment of inertia similarly simple?

Solution
No. Torque depends on three factors: force magnitude, force direction, and point of application. Moment of inertia depends on
both mass and its distribution relative to the axis of rotation. So, while the analogies are precise, these rotational quantities
depend on more factors.

10.4 Rotational Kinetic Energy: Work and Energy Revisited
In this module, we will learn about work and energy associated with rotational motion. Figure 10.14 shows a worker using an
electric grindstone propelled by a motor. Sparks are flying, and noise and vibration are created as layers of steel are pared from
the pole. The stone continues to turn even after the motor is turned off, but it is eventually brought to a stop by friction. Clearly,
the motor had to work to get the stone spinning. This work went into heat, light, sound, vibration, and considerable rotational
kinetic energy.

Figure 10.14 The motor works in spinning the grindstone, giving it rotational kinetic energy. That energy is then converted to heat, light,

sound, and vibration. (credit: U.S. Navy photo by Mass Communication Specialist Seaman Zachary David Bell)

Work must be done to rotate objects such as grindstones or merry-go-rounds. Work was defined in Uniform Circular Motion
and Gravitation for translational motion, and we can build on that knowledge when considering work done in rotational
motion. The simplest rotational situation is one in which the net force is exerted perpendicular to the radius of a disk (as shown
in Figure 10.15) and remains perpendicular as the disk starts to rotate. The force is parallel to the displacement, and so the net
work done is the product of the force times the arc length traveled:

To get torque and other rotational quantities into the equation, we multiply and divide the right-hand side of the equation by ,
and gather terms:

We recognize that and , so that

This equation is the expression for rotational work. It is very similar to the familiar definition of translational work as force
multiplied by distance. Here, torque is analogous to force, and angle is analogous to distance. The equation
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